翻訳と辞書
Words near each other
・ De Broglie–Bohm theory
・ De Broodfabriek
・ De Broqueville government in exile
・ De Brouckère metro station
・ De brug
・ De Bruijn
・ De Bruijn graph
・ De Bruijn index
・ De Bruijn notation
・ De Bruijn sequence
・ De Bruijn torus
・ De Bruijn's theorem
・ De Bruijn–Erdős theorem
・ De Bruijn–Erdős theorem (graph theory)
・ De Bruijn–Erdős theorem (incidence geometry)
De Bruijn–Newman constant
・ De Bruin
・ De bruut
・ De Bruyn
・ De Bruyne
・ De Bruyne Snark
・ De Bruyère C 1
・ De Buddy's
・ De Buitenmolen, Zevenaar
・ De Bullemolen, Lekkum
・ De Bunker
・ De Bunsen Committee
・ De Burgh
・ De Burgh Fitzpatrick Persse
・ De Burghs Bridge


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

De Bruijn–Newman constant : ウィキペディア英語版
De Bruijn–Newman constant
The De Bruijn–Newman constant, denoted by Λ and named after Nicolaas Govert de Bruijn and Charles M. Newman, is a mathematical constant defined via the zeros of a certain function ''H''(''λ'', ''z''), where ''λ'' is a real parameter and ''z'' is a complex variable. ''H'' has only real zeros if and only if ''λ'' ≥ Λ. The constant is closely connected with Riemann's hypothesis concerning the zeros of the Riemann zeta-function. In brief, the Riemann hypothesis is equivalent to the conjecture that Λ ≤ 0.
De Bruijn showed in 1950 that ''H'' has only real zeros if ''λ'' ≥ 1/2, and moreover, that if ''H'' has only real zeros for some λ, ''H'' also has only real zeros if λ is replaced by any larger value. Newman proved in 1976 the existence of a constant Λ for which the "if and only if" claim holds; and this then implies that Λ is unique. Newman conjectured that Λ ≥ 0, an intriguing counterpart to the Riemann hypothesis. Serious calculations on lower bounds for Λ have been made since 1988 and—as can be seen from the table—are still being made:
Since H(\lambda , z) is just the Fourier transform of F(e^\Phi) then ''H'' has the Wiener–Hopf representation:
: \xi (1/2+iz)= A\sqrt \pi (\lambda)^ \int_^\infty e^(x-z)^} H(\lambda , x) \, dx
which is only valid for lambda positive or 0, it can be seen that in the limit lambda tends to zero then H(0,x)=\xi(1/2+ix) for the case Lambda is negative then H is defined so:
: H(z,\lambda)=B\sqrt \pi (\lambda)^ \int_^\infty e^(x-z)^} \xi(1/2+ix) \, dx
where ''A'' and ''B'' are real constants.
==References==

*
*
*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「De Bruijn–Newman constant」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.